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§  New demands for computer simulation tools and applications 
have led to upgrades of CropSyst capabilities and 
functionalities in the last decade 

 

§  Integration into larger modeling frameworks and spatial scales 

§  Upgrades to run simulations under multiple platforms, in 
addition to MS-Windows, such as Linux based high-
performance computer clusters and supercomputers.  

§  Specialized tools to inform policy makers and stakeholders 
such as CropSyst-IST (Irrigation Strategies Tool), a tool to 
address responses to water shortages, OFoot, an organic farm 
management model, and CAFE Dairy, a farm energy and 
nutrient design and management system. 

CropSyst, from Crop Growth to Agricultural 
Systems Modeling 







VIC-CropSyst 



Crop Growth Models in Agriculture 



What is the model objective? 
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A mix of top-down and bottom-up approach 

The CTP 
model 



Average sunlit and shaded leaf photosynthesis 



More Processes and Parameters 

§  Canopy structure 
§  Canopy radiation 
§  Leaf photosynthesis 
§  Stomatal regulation (CO2, VPD, water) 
§  Canopy energy balance 
§  Root water uptake 
§  Canopy transpiration 
§  Biomass accretion (respiration, partitioning) 



CTP simulation of 
transpiration 
(lysimeter data 
from Bushland 
TX) 

Kremer et al., 2008 



Stöckle and Kemanian, 2009 

CTP model output 



CropSyst, a Process-oriented Top-Down 
Model 



§  Top-down resource-capture modeling 
approach 

§  Plant transpiration (T) 
-  Atmospheric water demand 
-  Soil water and roots 
-  Stomatal control 
-  Daily and hourly water uptake 
-  Water stress 

§  Biomass accretion (BA) 
-  Radiation-use efficiency (RUE) 
-  Transpiration-use efficiency (TUE) 

§  Interaction CO2 x T X BA 
-  Changes in stomatal conductance 
-  Changes in transpiration 
-  Changes in RUE and TUE 

CropSyst, a Process-oriented Top-Down 
Agricultural Systems Model 



CropSyst Biomass Growth 



CropSyst, a Process-oriented Top-Down 
Model 

First, let us take a look at transpiration 
and water uptake modeling 
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Very high evaporative demand (12 mm/day) 

high (8.4 mm/day) 

Low (4.8 mm/day) 

Two soils: SaL and SiL 
Root depth =1.8 m 



Jara and Stöckle, 1999 



Jara and Stöckle, 1999 

Water uptake 
simulation, 
non-
irrigated 
maize, fully 
recharged 
deep soil 
(data from 
Davis CA) 



Marsal and Stockle, 2012 

Pears 
(data from 

Lleida, 
Spain) 



Stockle et al., 2003 

ET simulation with varying degrees of water 
stress 



Stockle et al., 2003 

Biomass and yield simulation with varying 
degrees of water stress 



Biomass Accretion 
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   Radiation-use efficiency at low Da (upper limit) 

    Dual Approach 

tiSefB =

   Modified transpiration-use efficiency 







Biomass Accretion under 
Elevated CO2 



The implementation relies on experimental evidence of crop 
growth responses to CO2.  These experiments report the 
ratio (re) of biomass production for a specified elevated 
CO2 concentration (Ce) to the production for a baseline 
concentration (Cb).   

With this information, the biomass growth ratio at any 
CO2 concentration relative to the baseline (      )  can 
be obtained by assuming that       and [CO2] are 
related by a Michaelis-Menten type of expression: 
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    The future values of TUE and RUE at any CO2 
concentration must be adjusted with respect to the 
values at the specified [CO2] (CS) at which they were 
determined, which is not necessarily the baseline [CO2] 
defined for biomass response to elevated carbon 
dioxide. 

 

S

SCO
Sp Cr

CKr
r

F

)( 
 2

+
=

SCCO RUErRUE   Sp2
=



    The determination of             is more involved given 
that biomass production, canopy resistance to vapor 
transfer, and transpiration will change with elevated 
[CO2].  

    Experimental data for a number of C3 and C4 crops 
reported by Morison (1985) showed a linear 
reduction of canopy conductance as a function of 
increasing [CO2] with a slope (S) of 0.00121per ppm 

    of [CO2]. 

2COTUE



 The [CO2] adjusted canopy resistance is given by the 
following equation, where         is the FAO Irrigation and 
Drainage Paper #56 (Allen et al., 1998) standardized 
canopy resistance (0.00081 d/m) for use with the FAO 
version of the Penman-Monteith reference ET,       is 
current [CO2],         is [CO2] when the FAO56 was 
published (~359 ppm), and S was defined previously. 
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    Given the change of canopy resistance as a function of 
[CO2], crop transpiration calculated based on the standard 
FAO56 PM-ETo must be multiplied by the following 
adjustment factor (FT). 
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Carbon and Nitrogen Budgets 

§ Calculated daily for all soil layers 
§ Carbon and nitrogen cycling are interactive 
§ Crop residues and all types of organic 

materials are considered in cycling 
calculations  

§ Nitrogen demand and uptake included 
§    

§ Phosphorus not yet fully implemented 



Nitrogen Demand 
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0 N soil organic C at Pendleton
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Change in 0-30 cm soil organic C
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Simulated annual nitrous oxide emission
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