

ATMOSPHERIC GROUP WORKGROUP I.A PROGRESS REPORT

All-Hand Meeting June 26, 2012 Pullman, WA

TEAM MEMBERS

Atmospheric Team

Jennifer Adam, WSU

Serena Chung, WSU

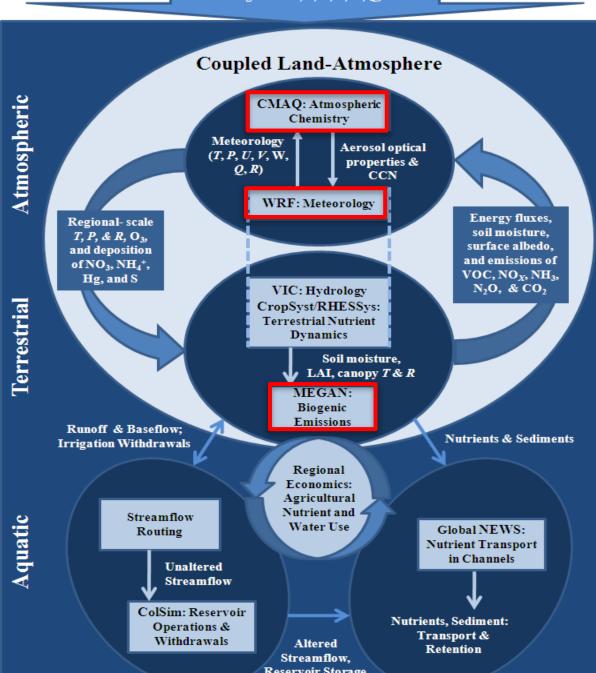
Alex Guenther, NCAR

Xiaoyan Jiang, NCAR (new member)

Brian Lamb, WSU

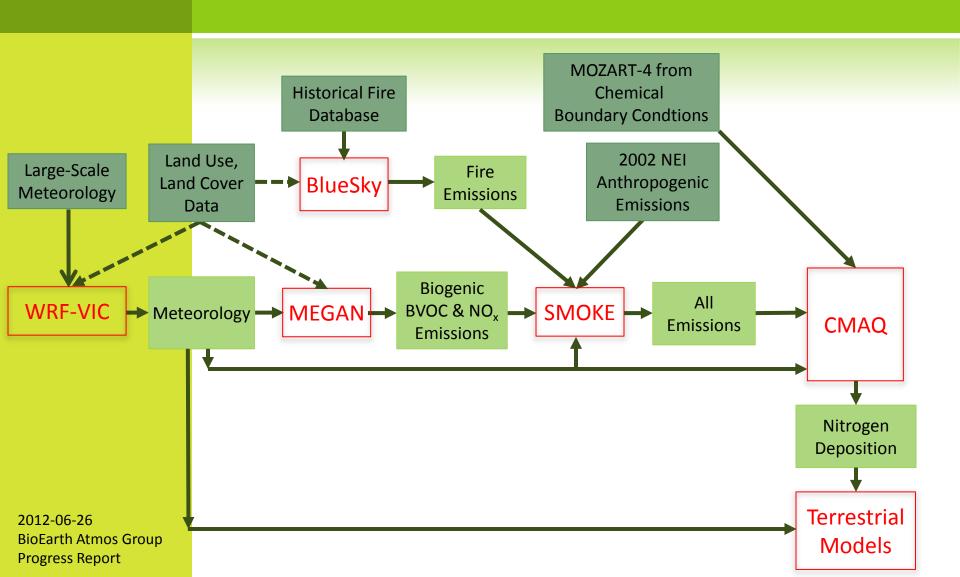
Ruby Leung, PNNL

Mingliang Liu, WSU

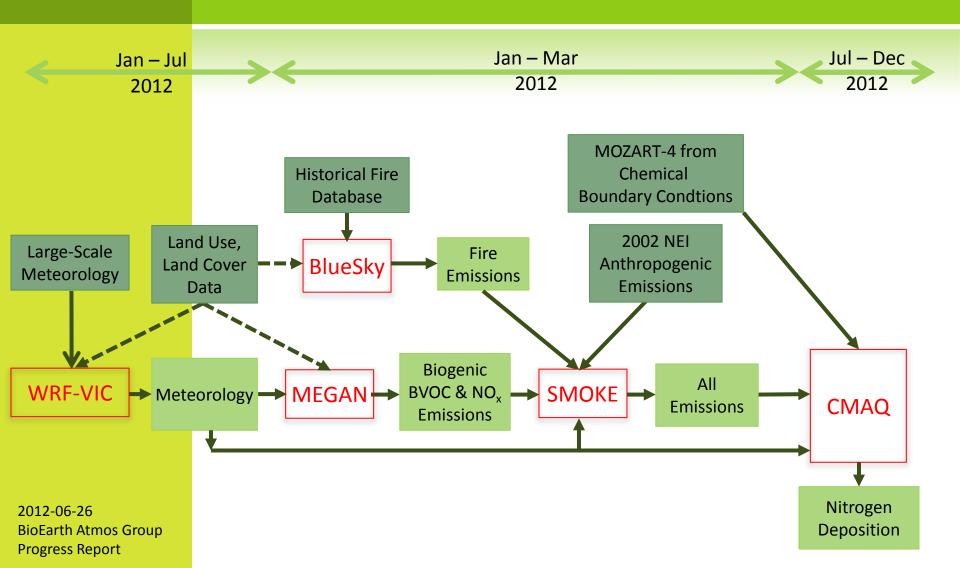

Tsengel Nergui, WSU

Joe Vaughan, WSU

Jinho Yoon, PNNL (new member)

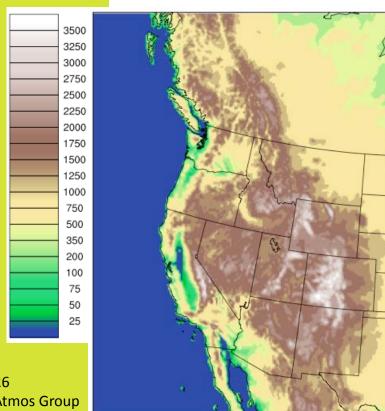

CCSM4: Global Climate

Large-scale T, P, U, V, W, Q, R



ATMOSPHERIC MODELING COMPONENTS

YEARS 1-2 GOAL: SEQUENTIAL SIMULATIONS


SEQUENTIAL SIMULATIONS: ORIGINAL TIMELINE

COUPLED WRF-VIC SIMULATION FOR SEQUENTIAL RUNS

New Simulation Domain

Terrain Height (m)

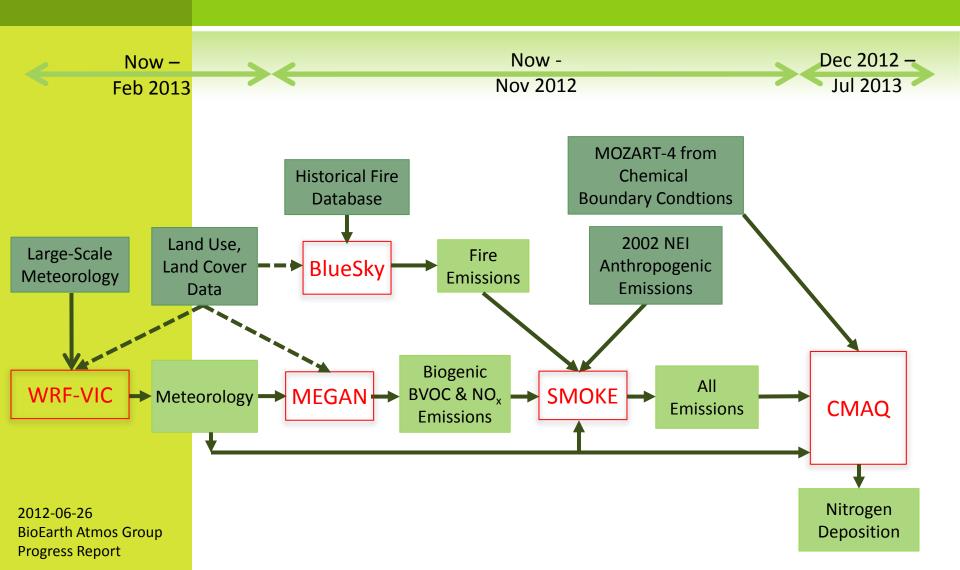
- Nes Simulation Domain
 - Previous domain is incompatible with CMAQ
 - Still western US, but a bit smaller
 - Still 12-km x 12-km grid cells
- WRF-VIC Simulation (old domain)
 - Using Mauer's vegetation map and VIC parameters for runoff parameterizations
 - Offline VIC simulation for western US has been done for spin-up/initialization of coupled WRF-VIC run
 - Original version of WRF-VIC did not have VIC parallelized and thus has memory issues for large or high resolution domains
 - Currently testing the updated version
- WRF-VIC Simulation for new domain
 - Will be performed after verification of simulations on the old domain

2012-06-26 BioEarth Atmos Group Progress Report

OFFLINE CMAQ SIMULATION FOR SEQUENTIAL RUNS

Purpose:

- Model nitrogen deposition and evaluate how it's modulated by ENSO or other climate cycles
- Provide results to offline RHESSys and CropSyst simulations


Set-up:

- A PNW subdomain within the WRF-VIC domain
- A subset of 1979-2008 to evaluate ENSO impact

© Chemical Boundary Conditions:

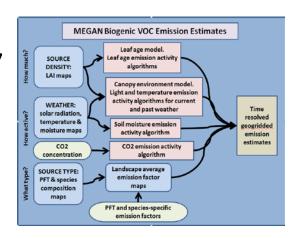
- 2007 from global chemical transport model MOZART-4 from Louisa Emmons of NCAR (already have)
- Will eventually have 2008-2009 MOZART-4 results as well
- © Currently setting up a short WRF-Noah run to help setup emissions processing using SMOKE
 - Anthropogenic Emission Inventory: 2002 National Emissions Inventory
 - Historical fires: Already have BlueSky runs for 1995-2004
 - Bioegenic Emissions: MEGANv2.1

SEQUENTIAL SIMULATIONS: PROPOSED NEW TIMELINE

COUPLED WRF-CMAQ

- © Currently working with CMAQv4.7.1, which is not coupled to WRF
- © CMAQv5.0 was released to the general public in February 2012.
 - Two-way coupling built into WRF v3.3
 - Has bi-directional ammonia flux
 - Because of science updates, requires different emissions speciation profiles
 - We have tested CMAQv5.0 in offline mode on aeolus cluster
 - Will be testing CMAQv5.0 coupled to WRFv3.3 soon

MEGAN


RECENT IMPROVEMENTS (VERSION 2.1)

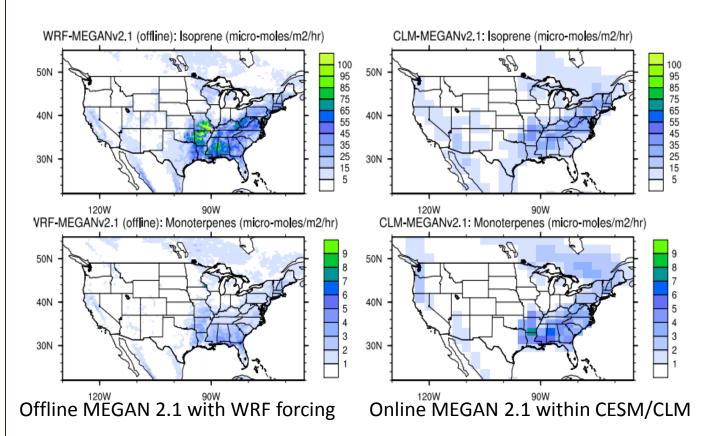
Urban

Biogenic Volatile Organic Compounds (VOCs)

- Updated emission factors, emission activity parameters
- New landcover data:
- High resolution (30-m) PFT (CLM scheme) and species composition for crops, trees, shrubs, grass. Integrates CDL, NLCD, FIA, NRCS data with adjusted NLCD in urban areas.
- LAI data: MODIS 8-day for individual years
- Response to increasing CO₂
- Additional compounds
 (There are 19 classes and 147 compounds)

http://acd.ucar.edu/~guenther/MEGAN/MEGAN.htm

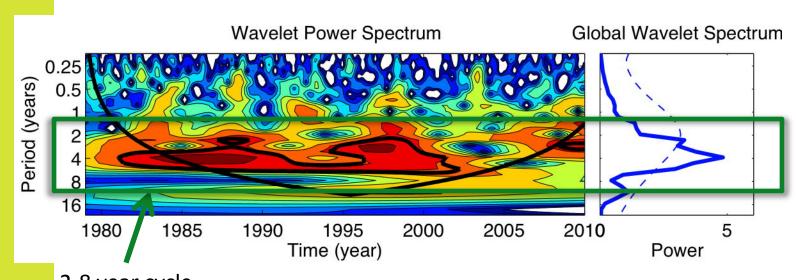
MEGAN 2.1 ESTIMATES*


SEE THE ONLINE DISCUSSION PAPER FOR DETAILS:

HTTP://WWW.GEOSCI-MODEL-DEV-DISCUSS.NET/5/1503/2012/

Compound	Compounds	Emissions
Class		(Tg yr ⁻¹)
Isoprene	Isoprene	535
α -Pinene	α -Pinene	66.1
t - β -Ocimene	t - β -Ocimene	19.4
β -Pinene	β -Pinene	18.9
Limonene	Limonene	11.4
Sabinene	Sabinene	9.0
Myrcene	Myrcene	8.7
3-Carene	3-Carene	7.1
Other Monoterpenes	Camphene	4.0
	eta-phellandrene	1.5
	Terpinolene	1.3
Sum of the 31 other monoterpenes 14.9		
α-Farnesene	αFarnesene	7.1
β -Caryophyllene	β caryophyllene	7.4
Other Sesquiterpenes	β Farnesene	4.0
	α Humulene	2.1
	α Bergamotene	1.3
Sum of the 27 other sesquiterpenes		7.1
232-MBO	232-MBO	0.6
Methanol	Methanol	996
Acetone	Acetone	43.7
Bidirectional VOC	Ethanol	20.7
	Acetaldehyde	20.7
	Formaldehyde	5.0
	Acetic acid	3.7
	Formic acid	3.7
Stress VOC	Ethene	284
	C3-hexenal	4.9
	DMNT	4.9
	C3-hexenol	2.9
Sum of the 11 other stress VOC		7.8
Other VOC	Propene	15.8
	Butene	8.0
	Homosalate	2.0
	Geranyl acetone	8.0
Sum of the 45 other VOC		5.5
Total VOC	Sum of 146 VOC	1005
CO	CO	81.6
Total	VOC and CO	1087
•		

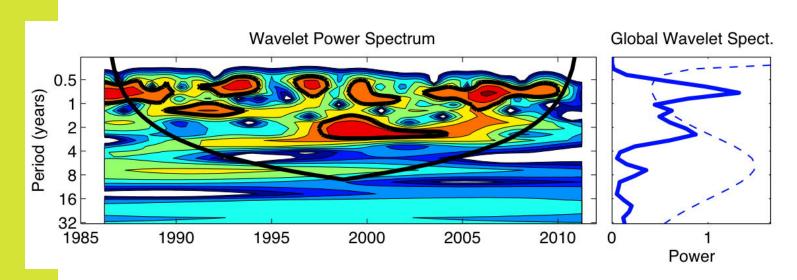
Global estimates of different MEGAN 2.1 compounds



MEGAN ONGOING/PLANNED ACTIVITIES

- Integrating MEGAN into Bioearth
 - Coupling with VIC-RHESSys-CropSyst
 - Coupling with CESM/CLM (boundary conditions) (done)
- Improve soil nitrogen emissions (NO, NH₃, N₂O)
- Add particles: pollen, fungal spores, bacteria, dust
- Use MEGAN in BioEarth to identify scientific questions that can be addressed with a PNW regional field study
 - Landcover change (e.g. poplar plantations)
 - Interactions of biogenic emissions and anthropogenic pollution

Analysis of N Deposition and ENSO


Wavelet Analysis¹ of NINO3.4 SST

2-8 year cycle indicative of ENSO

IS NITROGEN DEPOSITION IN THE WESTERN US MODULATED BY ENSO?

Wavelet Analysis¹ of Wet NO₃ Deposition

See Poster #4.3 by Tsengel