

METRICtm

Mapping Evapotranspiration at high Resolution with Internalized Calibration

Outline

- Introduction
- Background of METRICtm
- Surface Energy Balance
- Image Processing
- Estimation of Energy Fluxes
- Instantaneous ET, 24-hour ET and Seasonal ET
- Applications
- Acknowledgements
- Questions

Introduction

- Evapotranspiration transfers large volumes of water from soil (evaporation) and vegetation (transpiration) to the atmosphere.
- Water consumption by crops largest use of freshwater resources on Earth.
- Quantifying ET from irrigated fields is vital for management of water resources in areas of water scarcity
 - mitigation of impacts of reduced streamflow
 - establishment of hydrologic water balance
 - -water rights management and water regulation
- Satellite data ideally suited for deriving spatially continuous fields of ET using energy balance techniques

Why Satellites?

Conventional Methods for ET

- "weather data" gathered from fixed points extrapolated over large areas
- "Crop coefficients" assume well watered situation (difficult to quantify the impacts of stress)

Satellite imagery

- Little or no ground data are required
- Major advantage: ET can be computed without quantifying other complex hydrological processes.
- Evaporation and transpiration consumes energy.
- Energy balance applied at each pixel in to estimate how much water a particular field of crops can consume on any particular day

METRICtm

METRICtm

- ☐ Satellite based image processing tool for calculating ET as "residual" of energy balance at the Earth's Surface
- ☐ Focus is on "small" region of interest 100 miles x 100 miles
- □ Based on model "SEBAL" Surface Energy Balance Algorithm
 - Dr.Wim Bastiaanssen (beginning in 1990) (WaterWatch, The Netherlands)
 - Uses a near surface temperature gradient (dT) indexed to radiometric surface temperature
- Dr. Allen, Dr. Trezza and Dr. Tasumi
 - University of Idaho, Kimberly (beginning in 2000)
 - METRICtm uses SEBAL technique to estimate dT

Satellite Compatability

METRICtm needs both short wave and thermal bands

METRICtm can use images from

Satellite	Spatial Resolution	Revisit period
NASA - Landsat	30 m, 60 to 120 m	16 days
NASA - MODIS	500 m to 1000 m	daily
NASA -ASTER	15 m	8 days
NOAA -AVHRR	8 or 16 days	daily

Landsat - Polar Orbiting

Landsat is the only operational satellite with a "thermal band" and a pixel size small enough to map ET for individual fields.

A new image each 16 days for a specific location

LANDSAT 7 ETM+

Spectral Resolution (µ	m) Band Spatial Resolution (m)
Band 1: 0.450-0.515	Blue 30
Band 2: 0.525-0.690	Green 30
Band 3: 0.630-0.690	Red 30
Band 4: 0.760900	Near IR 30
Band 5 : 1.550-1.750	Mid IR 30
Band 6: 10.40-12.50	Thermal 60
Band 7: 2.080 -2.35	Mid IR 30

Product - Monthly ET

Summed ET for the Mission Valley, MT for during July 2008

Primary Inputs for METRIC

- Short wave and long wave (thermal) satellite images
- Digital Elevation Model (DEM)
- Weather Data from within or near the area of interest- windspeed, vapour pressure and reference ET
- Land Use Map

Concept of Surface Energy Balance

Surface Energy Balance

• ET flux is calculated as "residual" of the energy balance

Components of Energy Balance

Net Radiation (R_n)

- Date and time
- Reflectance (brightness of surface)
- Surface temperature

Heat to Air (H)

- Surface temperature
- Windspeed
- Vegetation type and roughness
- Surface to air temperature difference (dT)

Heat to Ground (G)

- Amount of vegetation
- Net radiation
- Surface temperature
- Reflectance

Image Processing

Models in METRIC

Net Radiation (R_n)

Sensible Heat Flux

$$H = \frac{\rho C_p dT}{r_{ah}}$$

$$\ln \left(\frac{z_2}{z_1}\right) - \psi_{h(z2)} + \psi_{h(z1)}$$

$$r_{ah} = \frac{u_* k}{u_* k}$$

 r_{ah} = aerodynamic resistance u^* = friction velocity (m/s) z_1 , z_2 = height in meters above the zero

 z_1 , z_2 = height in meters above the zero plane displacement

Two "anchor pixels" utilized where reliable values of H are estimated and solve for dT

Near Surface Temperature difference (dT)

 To compute sensible heat flux (H), define dT for each pixel

$$dT = T_{near surface} - T_{air}$$

 $dT = T_{z1} - T_{z2}$

- T_{air} is unknown
- •SEBAL and METRICtm assume a linear relationship between T_s and $dT = b + aT_s$ dem

T_{s_dem} is the delapsed surface temperature

Development of dT Vs Ts_dem

Cold Pixel

•
$$H_{cold} = R_n - G - LE_{cold}$$

 $LE_{cold} = 1.05 ETr$

$$dT_{cold} = \frac{H_{cold} r_{ah_cold}}{\rho_{cold} C_p}$$

• a well irrigated water surface with full cover where $T_s \sim T_{air}$ (In SEBAL, $H_{cold} = 0$)

Hot Pixel

•
$$H_{hot} = R_n - G - LE_{hot}$$
 $LE_{hot} \sim 0$

$$dT_{hot} = \frac{H_{hot} r_{ah_hot}}{\rho_{hot} C_p}$$

dry bare soil

Training of METRICtm

Once Ts and dT are determined for the cold and hot pixels, the relationship between Ts and dT is defined as linear

Soil Heat Flux (G)

• Empirical equation developed by Bastiaansen (1995):

$$\frac{G}{R_n} = T_s \left(0.0038 + 0.0074 \alpha \right) \left(1 - 0.98 NDV I^4 \right)$$

• An alternative equation was developed by Tasumi et al (2003) using soil heat flux data developed by Dr. J. L Wright (USDA) for irrigated crops near Kimberly, ID.

rops near Kimberly, ID.
$$\frac{G}{R_n} = 0.05 + 0.18e^{-.52LAI}$$
 LAI ≥ 0.5
$$\frac{G}{R_n} = 1.80(T_s - 273.16) / R_n + 0.084$$
 LAI < 0.5
$$\frac{G}{R_n} = G.R_n$$

Current G functions

$$\frac{G}{R_n} = 0.05 + 0.10e^{-.52LAI}$$
LAI \ge 0.5

$$G = \max(0.4H, 0.15R_n)$$

- G = fn(H) after suggestion of Stull (1988) and development of Allen (2010, memo)
- For water (NDVI<0):
 - On average for deep clear water, $G/R_n = 0.5$
 - For shallow turbid water, G/R_n< 0.5
- For snow:
 - If $\alpha > .47$, assume G/R_n = 0.5

Solving for ET and computing LE for longer periods

Calculation of Instantaneous ET

 Applying the energy balance equation, calculate LE:

$$LE = R_n - G - H$$

This ET rate expressed as latent heat (W/m2) is converted into depth of liquid evaporated as:

$$ET_{inst} = \frac{3600LE}{\rho_{w}\lambda}$$
 where, $\lambda = (2.501 - 0.00236(T_{s} - 273))10^{6}$

What about the rest of the day? Month? and year ???

ET_rF

 For longer time periods, METRIC uses Reference ET fraction (ET_rF) to extrapolate in time -synonymous with Kc

$$ET_rF = \frac{ET_{inst}}{ET_r}$$

• ET_r is the reference ET calculated for the time of the image

Assumptions:

- The fraction ET_rF is nearly constant for the day
- ET_r provides a good estimate of the climatic demands placed on each pixel.

$$ET_{24}$$
 (mm/day) = $ET_rF \times ET_{r-24}$

• ET_{r 24} is the cumulative 24-hour ET_r for the day of the image

Allen et al.,2005

Comparison with local K_c curves

24-Hour Evapotranspiration (ET₂₄)

Seasonal ET

- Seasonal ET map is desired which covers an entire growing season for quantifying water consumption
- Derived from ETrF images by interpolating between processed images

$$ET_{period} = \int ET_rF_t \cdot ET_{r24t}dt$$

 Assumption: ET for the entire area of interest changes in proportion to changes in the ET_r at the weather station

Generally, one image per month is sufficient

Adjustment for background evaporation to account for Inter -image Rainfall

ET from August13,1997 not adjusted for background soil evaporation

ET from August13,1997 adjusted for background soil evaporation

Kimberly, Idaho (Snake River Basin)

Validation of ET estimates

- Confirmation of ET from remote sensing with independent measurement is highly desirable
- Estimate of H includes internal biases that account for biases in R_n , G, T_s etc.
 - Therefore, comparisons are best made between measured and estimated ET, not H
- Ground data must be accurate

Accuracy of ET

- Satellite is 705 km above the earth
- ET is impacted by aerodynamics invisible to the satellite
- Design of SEBAL and METRIC make process relatively insensitive to the parameterization of aerodynamics
- "Magic" of the dT Vs T_s provides internal and relatively automatic calibration
- METRIC combines the strengths of energy balance from satellite and accuracy of ground-based reference ET calculation

Applications

ET maps are valuable for:

- Determining actual ET
- Ground Water Depletions
- Water Right Conflicts
- Refining crop coefficient curves
- Evaluation of regional and global climate models

Acknowlegements

Adapted from workshop presentation by Dr. Richard Allen, University of Idaho.

Questions?

Additional Slides

Solar Radiation and Reflectance

"non-reflected" radiation is what is absorbed at the surface and part of the energy balance. Therefore it is important to calculate it accurately

 $\rho_{t,b}$ = at-satellite reflectance for band "b"

 $\rho_{a,b}$ = path reflectance for band

 $\tau_{in,b}$ and $\tau_{out,b}$ are narrowband transmittances for incoming solar radiation and for surface reflected shortwave radiation

Friction Velocity

